A Palladium-Catalyzed Domino Coupling Process Leading to Annelated Pentafulvenes $\stackrel{\star}{\sim}$

Gerald Dyker*^a, F. Nerenz^b, P. Siemsen^b, P. Bubenitschek^c, and Peter G. Jones^c

Fachbereich 6, Organische/Metallorganische Chemie der Gerhard-Mecator-Universität-GH Duisburg^a, Lotharstraße 1, D-47048 Duisburg, Germany

Institut für Organische Chemie der Technischen Universität^b, Hagenring 30, D-38106 Braunschweig, Germany

Institut für Anorganische Chemie und Analytische Chemie der Technischen Universität^c, Hagenring 30, D-38106 Braunschweig, Germany

Received May 3, 1996

Key Words: Domino coupling reactions / Pentafulvenes / Catalysis / Palladacycles

Annelated pentafulvenes 2, 10, 13, and 14 are efficiently accessible by a palladium-catalyzed domino coupling process

of aryl substituted vinylic bromides 1, 9, 11, and 12, 5-Membered palladacycles 3 are discussed as key intermediates.

Palladium-catalyzed domino coupling processes open up efficient pathways from simple starting materials to complex target molecules^[1]. Vinylic bromides are particularly versatile coupling components for this purpose: C-C bond formation takes place with alkenes or with alkynes affording dienes^[2] and enynes^[3], respectively. In some special cases intermolecular domino coupling processes are initiated that lead to interesting carbo- and heterocyclic frameworks^[4]. Recently, we studied a cross-coupling reaction of ortho-methoxyiodoarenes with vinylic bromides as a new approach to substituted benzo[b]furans^[5]. The examination of the by-products formed during this domino process revealed that an excess of vinylic bromides is consumed by homocoupling reactions. In the case of certain aryl-substituted vinylic bromides annelated pentafulvenes are formed. In this paper we report on the scope and limitations of this palladium catalyzed homocoupling process.

Results and Discussion

The phenyl-substituted olefinic bromide 1a as well as the corresponding iodide 1b are efficiently transformed into the annelated pentafulvene 2 by palladium catalysis. 1 mol-% of palladium acetate is sufficient: the active Pd⁰ catalyst is formed in situ under the reaction conditions.

As the key step of this process we assume a cyclometalation to the 5-membered palladacycle $3^{[6]}$. For this reactive intermediate the reductive elimination of Pd⁰ is clearly inhibited, because the result would be a highly strained and antiaromatic benzocyclobutadiene. Instead, the palladacycle 3 adds another equivalent of starting material 1, presumably to give the Pd intermediate 4. Its regioisomer with the palladium atom at the vinylic position may be an alternative intermediate. Nevertheless, the final ring closure in the sense of an intramolecular Heck reaction^[1] leads to the same product 2.

The cyclometalation as the key step of this sequence should be strongly influenced by structural features: by the introduction of a bridge between the phenyl substituents the conformational flexibility is decreased and, depending on the size of the central ring, additional ring strain is enforced, a factor that might particularly hinder cyclometalation.

The model compounds are efficiently accessible as illustrated for the vinyl bromide 9 (Scheme 2). In order to stabilize the exocyclic double bond of 9 a quaternary center in the 10-position had to be introduced. For this purpose a spiroannelation was chosen, easily achieved by alkylation of anthrone (5) with 1,4-dibromobutane. The three-step sequence transforming spirocycle 6 into the model compound 9 via intermediates 8 and 7 turned out to be most efficient. The palladium-catalyzed coupling reaction proceeds in the same manner as observed for substrate 1, giving the polycyclic condensation product 10 in a remarkable 98% yield.

FULL PAPER

Scheme 2. Reagents: a: 1,4-dibromobutane, KOH/MeOH, reflux, 3 h, 48%. - b: MeMgCl, diethyl ether, 99%. - c: MgSO₄, toluene, reflux, 99%. - d: 1. Br₂, n-hexane/dichloromethane, -30°C; 2. potassium t-butoxide, -30°C, 77%. - e: 1 mol-% Pd(OAc)₂, K₂CO₃, n-Bu₄NBr, DMF, N₂, 3 d, 100°C, 98%

Analogously, substrates 11 and 12 lead to the annelated pentafulvenes 13 and 14 in about 90% yield. According to the X-ray structure^[7] of compound 14 the dibenzocycloheptene moiety is perpendicular to the dibenzoazulene part, presumably due to steric reasons (Figure 1).

14

13

Figure 1. Perspective view of the X-ray structure of polycyclic hydrocarbon 14. Radii are arbitrary

With the fluorenone-derived substrate **15** we have finally reached the limit of the new annelation reaction. In this case the strained pentafulvene **16** is not formed, probably because the cyclopalladation step is inhibited. Instead, a palladium-catalyzed Ullmann coupling reaction^[8] takes place leading to product **17**.

In conclusion, the palladium-catalyzed homocoupling reaction of aryl-substituted vinylic bromides is an efficient en-

FULL PAPER

try to annelated pentafulvenes. We are currently investigating mechanistic details, especially concerning the formation and reactivity of the 5-membered palladacycles of type **3** postulated as intermediates.

Financial support of the *Fonds der Chemischen Industrie* and of the *Volkswagenstiftung* is greatfully acknowledged as well as a generous donation of palladium acetate from *Degussa AG*.

Experimental

General: Melting points are uncorrected. – IR: Nicolet 320. – UV/Vis: HP 8452 A. – NMR: Bruker AM 400. ¹H-NMR spectra are recorded at 400.1 MHz by using CDCl₃ as the solvent and TMS as the internal standard. ¹³C-NMR spectra are measured at 100.6 MHz by using CDCl₃ as the solvent and the internal standard ($\delta = 77.05$). – MS: Finnigan MAT 8430. Mass spectra are recorded at an ionizing voltage of 70 eV by electron impact. – For analytical TLC precoated plastic sheets "POLYGRAM SIL G/UV₂₅₄" from Macherey-Nagel are used. – The substrates $1a^{[9]}$, $1b^{[9]}$, $11^{[10]}$, and $15^{[11]}$ are synthesized according to literature procedures.

6: To a suspension of 10.0 g (51.5 mmol) of anthrone (5) and 12.1 g (55.8 mmol) of 1,4-dibromobutane in 60 ml of dry methanol a solution of 9.50 g (169 mmol) of potassium hydroxide in 50 m of dry methanol is added dropwise at reflux within 30 min. After the reaction mixture has been cooled to room temp. it is filtered through silica and the solvent is removed from the filtrate in vacuo. By flash chromatography of the residue (TLC: silica/toluene; $R_{\rm f}$ = 0.78, 0.70, 0.35, 0.14) the fraction with $R_f = 0.35$ is isolated and crystallized from ethanol to afford 6.07 g (48%) of 6 as colorless crystals with m.p. 105–106 °C. – IR (KBr): $\tilde{v} = 3061$ cm⁻¹, 2968, 2952, 1656, 1601, 1476, 1457, 1328, 934, 756, 689. - UV (acetonitrile): λ_{max} (lg ϵ) = 192 nm (4.77), 202 (4.53, sh), 206 (4.48, sh), 214 (4.43, sh), 270 (4.26), 292 (3.74, sh). - ¹H NMR: $\delta =$ 2.17–2.21 (m, 4H), 2.34–2.38 (m, 4H), 7.39 ("dd", $J \approx 6.5$, 1.6 Hz, 1 H), 7.41 ("dd", $J \approx 6.5$, 1.5 Hz, 1 H), 7.57-7.64 (m, 4 H), 8.31 (dd, J = 7.8, 1.4 Hz, 2H). $- {}^{13}$ C NMR: $\delta = 28.74$ (t), 47.15 (t), 49.34 (s), 126.32 (d), 126.64 (d), 127.07 (d), 130.16 (d), 133.56 (s), 152.99 (s), 184.27 (s). - MS: m/z (%): 249 (22), 248 (100) [M⁺], 247 (9), 233 (24), 220 (19), 219 (33), 215 (15), 206 (33), 191 (26), 189 (28), 178 (71), 176 (21), 165 (33), 163 (11), 152 (20), 151 (7). -C₁₈H₁₆O (248.3): calcd. C 87.06, H 6.49; found C 86.97, H 6.48.

8: A solution of 6.44 ml (19.3 mmol) of 3 M methylmagnesium chloride in THF is added at 0°C under N₂ to a suspension of 2.40 g (9.66 mmol) of powdered 6 in 50 ml of dry diethyl ether. After the mixture has been stirred at room temp. for 1 h and at reflux for 16 h, it is hydrolyzed with 10 g of ice and with 30 ml of a saturated solution of ammonium dihydrogen phosphate in water and extracted three times with 50 ml of diethyl ether. The combined organic layers are filtered through silica and concentrated in vacuo. Crystallization of the residue from acetone gives 2.53 g (99%) of 8 as colorless crystals with m.p. 133–134 °C. – IR (KBr): $\tilde{v} = 3064$ cm⁻¹, 2980, 2955, 2947, 1476, 1444, 1083, 1045, 769, 756. - UV (acetonitrile): λ_{max} (lg ε) = 194 nm (4.83), 210 (4.41, sh), 214 (4.32, sh), 220 (4.21, sh), 228 (3.41, sh), 264 (2.88, sh). $- {}^{1}H$ NMR: $\delta =$ 1.60 (s, 3H), 1.88-1.97 (m, 4H), 2.16-2.23 (m, 3H, alkyl-H, OH), 2.60 (m, 2H), 7.31 (m, 4H), 7.41-7.45 (m, 2H), 7.83-7.87 (m, 2 H). $-{}^{13}$ C NMR: $\delta = 27.39$ (t), 28.46 (t), 36.40 (q), 49.21 (t), 49.26 (s), 70.61 (s), 125.38 (d), 125.79 (d), 126.36 (d), 127.65 (d), 141.73 (s), 143.78 (s). - MS: m/z (%): 264 (2) [M⁺], 250 (22), 249 (100), 246 (21), 231 (8), 217 (10), 207 (26), 204 (9), 203 (11), 202 (15), 191 (9), 178 (13). $- C_{19}H_{20}O$ (264.4): calcd. C 86.32, H 7.63; found C 86.45, H 7.67.

7: A mixture of 2.52 g (9.55 mmol) of 8 and 15.0 (125 mmol) of dry magnesium sulfate in 50 ml of dry toluene is stirred for 60 h

at room temp. After filtration through silica the solvent is removed in vacuo to give 2.34 g (99%) of crude product 7 which according to the ¹H-NMR spectrum is pure enough for further transformations. Colorless, air-sensitive crystals of 7 with m.p. 47–49 °C are obtained by crystallization from acetone. – ¹H NMR: $\delta = 1.81-1.91$ (m, 4H), 2.09–2.18 (m, 4H), 5.62 (s, 2H), 7.26 (m, 4H), 7.46 (m, 2H), 7.66 (m, 2H). – ¹³C NMR: $\delta = 25.07$ (t), 38.98 (t), 51.49 (s), 109.19 (t), 124.00 (d), 124.53 (d), 126.10 (d), 127.43 (d), 136.07 (s), 143.34 (s), 143.63 (s).

9: A solution of 1.65 g (10.3 mmol) of bromine in 5 ml n-hexane is added dropwise with stirring at -30 °C to a solution of 2.31 g (9.36 mmol) of 7 in 50 ml of n-hexane/20 ml of dichloromethane. After addition of 1.31 g (11.7 mmol) of potassium tert-butoxide and 11 mg (42 µmol) of 18-crown-6 stirring is continued for 1 h. The reaction mixture is extracted with 40 ml of water and the organic layer is filtered through silica and concentrated in vacuo. By flash chromatography of the oily residue (TLC: silica/hexanes; $R_{\rm f}$ = 0.22, 0.02) the fraction with $R_f = 0.22$ is isolated and crystallized from 2-propanol to furnish 2.36 g (77%) of 9 as colorless needles with m.p. 85–86 °C. – IR (KBr): $\tilde{v} = 3062 \text{ cm}^{-1}$, 2962, 2940, 1463, 1448, 778, 759, 718, 621. – UV (acetonitrile): λ_{max} (lg ϵ) = 200 nm (4.57), 224 (4.29, sh), 234 (4.11, sh), 262 (4.12, sh), 268 (4.14). $- {}^{1}$ H NMR: $\delta = 1.80 - 1.90$ (m, 4H), 2.10 - 2.20 (m, 4H), 6.79 (s, 1H), 7.21–7.32 (m, 4H), 7.44 (m, 2H), 7.47–7.49 (m, 1H), 8.03-8.07 (m, 1 H). - ¹³C NMR: $\delta = 24.32$ (t), 37.07 (t), 52.34 (s), 102.64, 123.42, 123.55, 124.43, 125.15, 126.35, 127.40, 127.76, 127.91 (all d), 134.01, 137.70, 140.89, 142.84, 144.89 (all s), - MS: m/z (%): 327/325 (8/11), 326/324 (41/40) [M⁺], 297/295 (10/11), 284/ 282 (11/11), 271/269 (16/16), 246 (26), 245 (100), 217 (17), 216 (20), 215 (35), 203 (17), 202 (37), 189 (13). $- C_{19}H_{17}Br$ (325.3): calcd. C 70.16, H 5.27; found C 70.20, H 5.30.

5-Bromomethylene-5 H-dibenzo [a,d] cycloheptene (12): To a solution of 1.50 g (7.35 mmol) of 5-methylene-5H-dibenzo[a,d]cycloheptene^[12] in 50 ml of CHCl₃ a solution of 1.17 g (7.35 mmol) of bromine in 10 ml CHCl₃ is added dropwise at 5°C. After the reaction mixture has been stirred at room temp. for 30 min, it is filtered through silica and the solvent (and HBr) is removed in vacuo. The residue is crystallized from ethanol or purified by flash chromatography (silica, toluene) to give 1.33-1.50 g (64-72%) of 12 as colorless crystals with m.p. 85°C. – IR (KBr): $\tilde{v} = 3015 \text{ cm}^{-1}$, 1487, 1434, 1212, 1093, 819, 806, 794, 775, 729, 701, 618. - UV (acetonitrile): λ_{max} (lg ε) = 228 nm (4.55), 238 (4.39, sh), 244 (4.33, sh), 248 (4.30, sh), 292 (4.01), 310 (3.86, sh). $- {}^{1}H$ NMR: $\delta = 6.37$ (s, 1 H), 6.85 (d, J = 11.9 Hz, 1 H), 6.91 (d, J = 11.9 Hz, 1 H), 7.28–7.36 (m, 6 H), 7.40 ("td", $J \approx 7.2$, 2.0 Hz, 1 H), 7.47 ("d", $J \approx 7.3$ Hz, 1 H). $-{}^{13}$ C NMR: $\delta = 107.81$ (d), 127.30 (d), 127.80 (d), 127.86 (d), 128.16 (d), 128.62 (d), 128.72 (d), 128.86 (d), 129.12 (d), 130.58 (d), 131.20 (d), 133.96 (s), 134.02 (s), 136.06 (s), 139.49 (s), 145.93 (s). - MS: m/z (%): 285/283 (12/13), 284/282 (70/69) $[M^+]$, 204 (18), 203 (100), 202 (79), 200 (19), 101 (20). $-C_{16}H_{11}Br$ (283.2): calcd. C 67.87, H 3.92; found C 67.75, H 3.90.

Palladium-catalyzed Homocoupling Reactions of Vinylic Bromides; General Procedure: A mixture of 4 mmol of vinylic bromide, 1.11 g (8.0 mmol) of K_2CO_3 , 645 mg (2.00 mmol) of *n*-Bu₄NBr, 11 mg (49 µmol) of Pd(OAc)₂, and 10 ml of DMF in a sealed tube (for convenience) is stirred under N₂ at 100 °C for 3 d. After the reaction mixture has been diluted with 50 ml of water it is extracted three times with 50 ml diethyl ether. The ether extract is filtered through silica and concentrated. The crude product is purified by flash chromatography (hexanes/diethylether, silica gel) as specified below.

1-(Diphenylmethylene)-3-phenyl-1 H-indene (2): 1.06 g, (4.07 mmol) of 1-bromo-2,2-diphenylethene (1a) is transformed by pal-

ladium catalysis according to the general procedure (see above). The crude product is recrystallized from diethyl ether to give 660 mg of 2. The filtrate is concentrated and the residue purified by flash chromatography (silica, hexanes; $R_{\rm f} = 0.23$) to give another 19 mg of 2; total yield 679 mg (94%) of 2 as orange crystals with m.p. 205°C (from CH₂Cl₂/ethanol, ref.^[13]: m.p. 204°C). - IR (KBr): $\tilde{v} = 3051 \text{ cm}^{-1}$, 1588, 1488, 1440, 1355, 780, 763, 757, 704, 699, 688, 608. – UV (acetonitrile): λ_{max} (lg ε) = 192 nm (4.90), 202 (4.76, sh), 228 (4.42), 250 (4.44), 298 (4.13), 348 (4.23). - ¹H NMR: $\delta = 6.68$ (d, J = 7.7 Hz, 1 H, 7-H), 6.76 (s, 1 H, 2-H), 6.92 (td, J = 7.6, 1.1 Hz, 1 H, 6-H), 7.19 (td, J = 7.5 Hz, J = 1.1 Hz, 1 H, 5-H), 7.33-7.46 (m, 13 H, phenyl H), 7.55 (d, J = 7.5 Hz, 1 H, 4-H), 7.64 (m, 2H, phenyl H); assignments from H,H-COSY. -¹³C NMR: δ = 120.11 (d), 123.83 (d), 124.91 (d), 126.99 (d), 127.74 (d), 127.94 (d), 128.18 (d), 128.52 (d), 128.60 (d), 130.47 (d), 131.63 (d), 135.89 (s), 137.26 (s), 138.14 (s), 141.07 (s), 142.48 (s), 142.86 (s), 144.36 (s), 146.70 (s). - MS: m/z (%): 357 (31), 356 (100) [M⁺], 279 (38), 276 (18), 178 (15), 57 (9). – $C_{28}H_{20}$ (356.5): calcd. C 94.35, H 5.65; found C 94.38, H 5.62.

10: 1.30 g (4.00 mmol) of 9 is transformed by palladium catalysis according to the general procedure (see above). By flash chromatography of the crude product (silica, hexanes; $R_f = 0.01, 0.11$) the fraction with $R_{\rm f} = 0.11$ is isolated and crystallized from 2-propanol to yield 960 mg (98%) of 10 as red crystals with m.p. 205 °C. - IR (KBr): $\tilde{v} = 2952 \text{ cm}^{-1}$, 1472, 1450, 1433, 759. – UV (acetonitrile): λ_{max} (lg ϵ) = 198 nm (4.90), 246 (4.35, sh), 264 (4.25, sh), 310 (4.29), 366 (4.29), 426 (4.11, sh). $- {}^{1}$ H NMR, at 25 °C: $\delta = 1.1 - 2.8$ (br. m, 16H), 7.09 (t, $J \approx 7.7$ Hz, 1H), 7.21–7.30 (m, 5H), 7.34 (m, 2H), 7.38 (s, 1H), 7.47 ("d", $J \approx 7.7$ Hz, 1H), 7.51 ("d", $J \approx$ 7.0 Hz, 1 H), 7.52 ("d", $J \approx$ 7.5 Hz, 1 H), 7.66 ("d", $J \approx$ 7.6 Hz, 1 H), 7.81 ("dd", $J \approx$ 7.3, 1.1 Hz, 1 H), 7.82 ("dd", $J \approx$ 7.8, 1.3 Hz, 1H), 7.97 ("dd", $J \approx 7.4$, 1.3 Hz, 1H); aliphatic region at -40 °C: $\delta = 1.50 - 1.60$ (m, 2H), 1.84 (m, 2H), 2.04 - 2.22 (m, 6H), 2.07-2.41 (m, 4H), 2.52 (m, 2H). $-{}^{13}$ C NMR, at 25° C; $\delta = 24.19$ (t), 28.83 (t), 50.25 (s), 52.96 (s), 117.20 (d), 121.34 (d), 123.25 (d), 123.50 (d), 124.08 (d), 124.34 (d), 124.88 (d), 125.40 (d), 125.84 (d), 126.68 (d), 126.77 (d), 127.60 (d), 127.98 (d), 128.10 (s), 128.54 (d), 129.06 (d), 129.57 (d), 134.50 (s), 135.60 (s), 137.57 (s), 137.85 (s), 137.91 (s), 140.13 (s), 141.05 (s), 141.44 (s), 145.38 (s), 146.45 (s), 148.76 (s); aliphatic region at -40 °C: $\delta = 23.36$ (t), 23.94 (t), 28.75 (t), 29.21 (t), 30.15 (t), 41.76 (t), 47.55 (t), 49.59 (s), 49.86 (t), 52.71 (s). - MS: m/z (%): 490 (10), 489 (42), 488 (100) [M⁺], 459 (10), 433 (9), 403 (9), 389 (7), 208 (9), 202 (39), 201 (15), 200 (14), 194 (19), 193 (14), 86 (11), 84 (17). $-C_{38}H_{32}$ (488.7): calcd. C 93.40, H 6.60; found C 93.48, H 6.62.

2-(10,11-Dihydro-5 H-dibenzo[a,d]cyclohepten-5-ylidene)-6,7dihydro-2 H-dibenz [cd,h] azulene (13): 1.14 g (4,00 mmol) of 11^[10] is transformed by palladium catalysis according to the general procedure (see above). The crude product is crystallized from diethyl ether to give 621 mg of 13. The filtrate is concentrated and the residue purified by flash chromatography (silica, hexanes; $R_{\rm f} =$ 0.23) to give another 120 mg of 13; total yield 741 mg (91%) of 13 as a yellow solid with m.p. 196 °C. – IR (KBr): $\tilde{v} = 2926 \text{ cm}^{-1}$, 1598, 1481, 1450, 1437, 1427, 1416, 1355, 775, 765, 759, 610. -UV (acetonitrile): λ_{max} (lg ϵ) = 194 nm (4.94), 208 (4.78, sh), 220 (4.55, sh), 230 (4.38), 250 (4.36), 300 (4.29), 324 (4.19), 342 (4.17), 392 (3.87). $- {}^{1}$ H NMR: $\delta = 2.81 - 2.97$ (m, 2H), 3.06 - 3.18 (m, 4H, 6-H, 7-H), 3.36-3.49 (m, 2H), 6.73 (d, J = 7.2 Hz, 1H, 3-H), 6.81 ("t", $J \approx 7.6$ Hz, 1H, 4-H), 6.95 (d, J = 7.7 Hz, 1H, 5-H), 6.98 (s, 1H, 1-H), 7.14-7.33 (m, 9H), 7.42 (m, 2H), 7.65 (m, 1H, 11-H). $- {}^{13}C$ NMR: $\delta = 31.95$ (t), 32.80 (t), 34.27 (t, C-6), 36.40 (t, C-7), 121.71 (d, C-3), 124.50 (d, C-4), 125.36 (d, C-1), 125.91 (d), 126.07 (d), 126.35 (d), 127.82 (d), 127.99 (d, C-5), 128.10 (d,

C-11), 128.37 (d), 128.42 (d), 129.18 (d), 128.73 (d), 129.92 (d), 130.00 (d), 134.79 (s), 136.90 (s), 137.00 (s), 137.06 (s), 137.58 (s), 138.03 (s), 140.51 (s), 140.63 (s), 140.82 (s), 141.68 (s, C-7a), 143.91 (s, C-11b), 146.47 (s, C-5'); assignments from homonuclear H,Hand C,H-COSY. - MS: m/z (%): 409 (35), 408 (100) [M+], 317 (14), 191 (53). – $C_{32}H_{24}$ (408.5): calcd. C 94.08, H 5.92; found C 94.08, H 5.96.

2-(5 H-Dibenzo[a,d]cyclohepten-5-ylidene)-2 H-dibenz[cd,h]azulene (14): 1.12 g (4.00 mmol) of 12 is transformed by palladium catalysis according to the general procedure (see above). - The crude product is crystallized from diethyl ether to give 533 mg of 14. The filtrate is concentrated and the residue purified by flash chromatography (silica, hexanes/diethyl ether, 3:1; $R_f = 0.42$) to give another 135 mg of 14; total yield 668 mg (84%) of 14 as orange-red needles with m.p. 213 °C (from CH₂Cl₂/methanol). - IR (KBr): $\tilde{v} = 3049 \text{ cm}^{-1}$, 3019, 1592, 1481, 1359, 816, 801, 785, 781, 767, 756, 747, 736, 607. – UV (acetonitrile): λ_{max} (lg ε) = 192 nm (4.67), 218 (4.69), 258 (4.62, sh), 262 (4.64), 284 (4.34, sh), 300 (4.31), 316 (4.21, sh), 440 (3.80). $- {}^{1}$ H NMR; $\delta = 6.13$ (s. 2H, 6-H, 7-H), 6.37 ("d", $J \approx 7.1$ Hz, 1H, 3-H), 6.69 ("t", $J \approx 7.7$ Hz, 1H, 4-H), 6.74 (s, 1H, 1-H), 6.95 (d, J = 11.8 Hz, 1H), 6.98 (d, J = 11.8 Hz, 1 H), 7.01 (m, 1 H, 8-H), 7.09 (m, 2 H), 7.36-7.52 (m, 8 H), 7.54–7.57 (m, 2 H). – ¹³C NMR: δ = 120.82 (d, C-1), 124.19 (d, C-3), 125.71 (d, C-4), 127.16 (d), 127.66 (d), 127.81 (d), 128.11 (d), 128.17 (d), 128.53 (d, C-11), 128.70 (C-9), 128.89, 128.94 (both d, C-3', C-4'), 129.92 (C-5), 130.95 (C-6), 130.97, 131.14 (both d, C-10', C-11'), 131.48 (s, C-5a), 132.07 (d), 132.84 (s), 133.78 (s), 133.84 (s), 134.30 (d, C-8), 134.49 (s), 135.29 (s, C-7a), 137.30 (s), 137.44 (s), 137.49 (s), 139.29 (s), 142.04 (s, C-5'), 143.39 (s, C-2), 143.99 (s, C-11b); assignments from homonuclear H,H- and C,H-COSY. – MS: m/z (%): 405 (35), 404 (100) [M⁺], 403 (32), 402 (18), 389 (11), 193 (9). $-C_{32}H_{20}$ (404.5): calcd. C 95.02, H 4.98; found C 94.58, H 5.07.

Crystal Data for Compound 14^[7]: C₃₂H₂₀, space group Pna2₁, $a = 2132.5(3), b = 1956.6(3), c = 496.01(8) \text{ pm}, U = 2.0695 \text{ nm}^3$ Z = 4, λ (Mo- K_{α}) = 71.073 pm, μ = 0.07 mm⁻¹, T = -100 °C. A red prism ca. $0.8 \times 0.25 \times 0.15$ mm was mounted in an inert oil. 7737 intensities were measured with a Siemens R3 diffractometer to $2\Theta_{\text{max}}$ 50°, of which 3616 were unique (R_{int} 0.057). The structure was solved by direct methods and refined anisotropically on F^2 (program SHELXL-93, G. M. Sheldrick, University of Göttingen). H atoms were included by using a riding model. The final $wR(F^2)$ was 0.075, with conventional R(F) 0.041, for 290 parameters and 323 restraints; S = 0.81, max. $\Delta \rho \ 111 \ e \ nm^{-3}$.

1,2-Bis(9-fluorenylidene)ethane (17): 1.05 g (4.10 mmol) of 15 are transformed by palladium catalysis according to the general procedure (see above). The crude product, scarcely soluble in CH₂Cl₂ and diethyl ether, is crystallized from toluene to give 442 mg (61%) of 17 as orange crystals with m.p. $374 \,^{\circ}$ C (ref.^[14]: m.p. 374°C). - MS: m/z (%): 355 (29), 354 (100) [M⁺], 353 (73), 352 (38), 350 (19), 339 (10), 177 (13), 175 (23).

- ^[3] [^{3a]} B. M. Trost, G. Kottirsch, J. Am. Chem. Soc. 1990, 112, 2816–2818. [^{3b]} A. G. Meyers, P. M. Harrington, E. Y. Kuo, J. Am. Chem. Soc. **1991**, 113, 694–695
- [4] For some representative examples: ^[4a] G. P. Chiusoli, J. Organomet. Chem. 1986, 300, 57-80. - [4b] L. J. Silverberg, G.

^{*} Dedicated to Professor Dr. Peter Sartori on the occasion of his 65th birthday.

^[1] J. Tsuji, Palladium Reagents and Catalysts: Innovations in Or-

ganic Synthesis, Wiley, Chichester, 1995. ^[2] ^[2a] B. A. Patel, J. E. Dickerson, R. F. Heck, J. Org. Chem. 1978, 43, 5018-5020. - ^[2b] K. Nilsson, A. Hallberg, J. Org. Chem. 1992, 57, 4015-4017.

Wu, A. L. Rheingold, R. F. Heck, J. Organomet. Chem. 1991, 409, 411-420. – ^[4c] B. M. Trost, J. Dumas, J. Am. Chem. Soc. **1992**, 114, 1924–1925. – ^[4d] R. Grigg, P. Kennewell, A. Teas-dale, V. Sridharan, Tetrahedron Lett. **1993**, 34, 153–156. – ^[4e] T. J. Katz, A. M. Gilbert, M. E. Huttenloch, G. Min-Min, *Tetrahedron Lett.* **1993**, *34*, 3551–3554. – ^[41] K. Albrecht, A. de Meijere, *Chem. Ber.* **1994**, *127*, 2539–2541. – ^[4g] G. D. Harris, Jr., R. J. Herr, S. M. Weinreb, *J. Org. Chem.* **1993**, *58*, 5452-5464.

- [5] G. Dyker, J. Org. Chem. 1993, 58, 6426-6428.
 [6] G. Dyker, J. Körning, F. Nerenz, P. Siemsen, S. Sostmann, A. Wiegand, Pure Appl. Chem. 1996, 68, 323-326.
 [7] Further details of the crystal structure investigation are available.
- able on request from Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, on quoting the depository

number CSD-405115 the names of the authors, and the journal citation.

- [8] G. Bringmann, R. Walter, R. Weirich, Angew. Chem. 1990, 102, ^[9] D. Y. Curtin, E. W. Flynn, J. Am. Chem. Soc. 1959, 81,
- 4714-4719.
- ^[10] R. D. Hoffsommer, D. Taub, N. L. Wendler, J. Med. Chem.
- [11] D. F. DeTar, E. Broderick, G. Foster, B. D. Hilton, J. Am. Chem. Soc. 1950, 72, 2183-2184.
 [12] A. C. Cope, S. W. Fenton, J. Am. Chem. Soc. 1951, 73, 1673-1678.
 [13] W. Isrichedelti, A. Zimmiele, Bol. J. Chem. 1078, 52, 1375-1387.
- ^[13] W. Jasiobedski, A. Zimniak, Pol. J. Chem. 1978, 52, 1375-1387.
- ^[14] N. Campbell, A. E. S. Fairful, J. Chem. Soc. 1949, 1102-1106. [96091]